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29 Abstract 

30 Long-chain perfluoroalkyl subs tances (PFASs) are being replaced by short-chain PFASs and 

31 fluorinated alternatives. For ten traditionally studied PFASs and seven recently discovered 

32 perfluoroalkyl ether carboxylic acids (PFECAs), we report (1) occurrence in the Cape Fear River 

33 (CFR) watershed, (2) fate in drinking water treatment processes, and (3) adsorbability on 

34 powdered activated carbon (PAC). In the headwater region of the CFR basin, PFECAs were not 

35 detected in the raw water of a drinking water treatment plant (DWTP), but concentrations of 

36 traditionally studied PFASs were high. The US Environmental Protection Agency's lifetime 

37 health advisory level (70 ng!L) fo r perfluorooctane sulfonic acid and perfluorooctanoic acid 

38 (PFOA) was exceeded on 57 of 127 sampling days. In raw water of a DWTP downstream of a 

39 PFAS manufacturer, the mean concentration of perfluoro-2-propoxypropanoic acid 

40 (PFPrOPrA), a replacement for PFOA, was 631 ng!L (n=37). Six other PFECAs were detected 

41 with three exhibiting chromatographic peak areas up to 15 times that of PFPrOPrA. At this 

42 OWTP, PFECA removal by coagulation, ozonation, biofiltration, and disinfection was 

43 negligible. PFAS adsorbability on PAC increased with increasing chain length. Replacing one 

44 CF2 group with an ether oxygen decreased PFAS affinity for PAC, while replacement of 

45 additiona l CF2 groups with ether oxygens did not lead to further affinity changes. 

46 
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49 Introduction 

50 Perfluoroalkyl substances (PFASs) are extensively used in the production of plastics, water/stain 

51 repellents, firefighting foams and food-contact paper coatings. The widespread occurrence of 

52 PFASs in drinking water sources is closely related to the presence of industrial s ites, military 

53 fire training areas, civilian airports, and wastewater treatment plants. 1 Until 2000, long-chain 

54 PFASs, such as perfluorocarboxylic acids (PFCAs) with 7 or more carbon atoms and 

55 perfluorosulfonic acids (PFSAs) with 6 or more carbon atoms, were predominantly used.2 

56 Accumulating evidence about ecotoxicological and human health effects3· 4 associated with 

57 exposure to long-chain PFASs has led to increased regulatory attention. Recently the U.S. 

58 Env ironmental Protection Agency (USEPA) established a lifetime health advisory level (HAL) 

59 of 70 ng/L for the sum of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid 

60 (PFOS) concentrations in drinking water.3·6 Over the last decade, production of long-chain 

61 PFASs has decl ined in Europe and North America, and manufactures are moving towards 

62 short-chain PFASs and fluorinated alternatives.7•10 Some fluorinated alternatives were recently 

63 identified,8• 11 but the majority of the organofluorine loading to the aquatic environment remains 

64 un identified. 1H 1 

65 One group of fluorinated alternatives, perfluoroalkyl ether carboxylic acids (PFECAs), was 

66 recently discovered in the Cape Fear River (CFR) downstream of a PFAS manufacturing 

67 faci lity. 11 Identified PFECAs included perfluoro-2-methoxyacetic acid (PFMOAA), perfluoro-3-

68 methoxypropanoic acid (PFMOPrA), perfluoro-4-methoxybutanoic acid (PFMOBA), perfluoro-

69 2-propoxypropanoic acid (PFPrOPrA), perfluoro(3,5-dioxahexanoic) acid (PF02HxA), 

70 perfluoro(3,5,7-trioxaoctanoic) add (PF030A) and perfluoro(3,5,7,9-tetraoxadecanoic) acid 

71 (PF04DA) (Table 51 and Figure 51 in supporting information (51)). The ammonium salt of 

72 PFPrOPrA is a known PFOA alternative that has been produced since 2010 with the trade name 

73 "GenX".'5 According to the manufacturer, the ether oxygen enables "very rapid 

74 bioelimination"15; however, except for the PFPrOPrA data reported by the manufacturer,u•-18 

75 little information is available on pharmacokinetic behavior, toxicity, or environmental fate and 
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76 transport of PFECAs. To the knov.rledge of the authors, the only other published PFECA 

77 occurrence data are for PFPrOPrA in Europe and China,l9 and no published data are available 

78 on the fate of PFECAs during water treatment. 

79 The strong C-F bond makes PFASs refractory to abiotic and biotic degradation,20 and most 

80 water treatment processes are ineffective for legacy PFAS removal.21•26 Processes capable of 

81 removing PFCAs and PFSAs include nanofiltration,27 reverse osmosis24, ion exchange,27• 28 and 

82 activated carbon adsorption,27
• 28 with activated carbon adsorption being the most widely 

83 employed treatment option. 

84 The objectives of this research were to (1) identify and quantify the presence of legacy PFASs 

85 and emerging PFECAs in drinking water sources, (2) assess PFAS removal by conventional and 

86 advanced processes in a full-scale drinking water treatment plant (OWTP), and (3) evaluate 

87 PFAS adsorbability by powdered activated carbon (PAC). 

88 1\1aterials and Methods 

89 Water samples: Source water of three OWTPs treating surface water in the CFR watershed was 

90 sampled between June 14 and December 2, 2013 (Figure 52 in ST). Samples were collected from 

91 the raw water tap at each DWTP daily as either 8-hour composite (DWTP A, 127 samples) or 24-

92 hour composite (OWTP B, 73 samples; OWTP C, 34 samples). Samples were collected in 250-mL 

93 HOPE bottles and picked up (OWTPs A and B) or shipped overnight (DWTP C) on a weekl y 

94 basis. All samples were stored at room temperature until analysis (within 1 week of receiving). 

95 On August 18, 2014, grab samples were collected at OWTP C after each unit process in the 

96 treatment train (raw water ozonation, coagulation/flocculation/sedimentation, settled water 

97 ozonation, biological activated carbon (BAC) filtration, disinfection by medium pressure UV 

98 lamps and free chlorine). Operational conditions of OWTP Con the sampling day are listed in 

99 Table 52 in 51. Samples were collected in 1-L HOPE bottles and stored at room temperature 

100 until analysis. On the same day, grab samples of CFR water were collected in six 20-L HDPE 
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101 carboys at William 0. Huske Lock and Dam downstream of a PFAS manufacturing site and 

102 stored at 4°C until use in PAC adsorption experiments. 

103 Adsorption experiments: PFAS adsorption by PAC was studied in batch reactors (amber glass 

104 bottles, 0.45 L CFR water). PFECA adsorption was studied at ambient concentrations (-1,000 

105 ng!L PFPrOPrA, chromatographic peak areas of other PFECAs -10-800% of the PFPrOPrA 

106 area). Legacy PFASs were present at low concentrations (<40 ng/L) and spiked into CFR water 

107 at -1000 ng/L each. Background water matrix characteristics are summarized in Table 53 in SI. 

108 A thermally-activated, wood-bnsed PAC (PicaHydro MP23, PICA USA, Columbus OH, mean 

109 diameter: 12 f.liD, BET surface area: 1460 m2/g)29 proved effective for PFAS removal in a prior 

110 study28 was used at doses of 30, 60 and 100 mg/L. These doses represen t the upper feasible end 

111 for d rinking water treatment. Samples were taken prior to and periodically after PAC addition 

112 for PFAS analysis. 

113 PFAS analysis: Information about analytical standards and the liquid chromatography-tandem 

114 mass spectrometry (LC-MS/MS) method for PFAS quantification is provided in SI. 

115 Results and Discussion 

116 PFAS occurrence in drinking water sources: Mean PFAS concentrations in source water of 

117 three DWTPs treating surface water from the CFR watershed are shown in Figu re 1. In 

118 communities A and B, only legacy PFASs were detected (mean L:PFAS: 355 ng!L in community 

119 A, 62 ng/L in community B). Detailed concentration datn are shown in Table 56 nnd Figure 53 in 

120 SI. In community A, PFCAs with 4-8 carbons, perfluorohexane sulfonic acid (PFHxS) and PFOS 

121 were detected at median concentrations > QLs. Mean and median concentrations were 44 and 29 

122 ng!L, respectively, for PFOS, and 46 and 34 ng!L, respectively, for PFOA. During the 127-day 

123 sampling cnmpaign, the sum concentrntion of PFOA and PFOS exceeded the USEPA HAL of 70 

124 ng!L on 57 days, and the mean over the entire study period was 90 ng/L. Similar legacy PFAS 

125 concentrations were observed in the same area ten years ago,30 suggesting that PFAS source(s) 

126 upstream of community A have long-term negative impacts on drinki ng water quality. Also, 
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127 our data show that legacy PFASs remain surface water contaminants of concern even though 

128 their production has been phased out in the US. Relating total PFAS concentration to average 

129 daily stream flow (Figure 54 in SI) illustrated a general trend of low PFAS concen trations at 

130 high flow and high concentrations at low flow, consistent with the hypothesis of upstream point 

131 source(s). In community 8, perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA) 

132 were the most frequently detected, with mean concentrations of 12 and 19 ng!L, respectively. 

133 Mean and median PFOA and PFOS concentrations were <QL, and the maximum sum 

134 concen tration of PFOA and PFOS was 59 ng/L. Lower PFAS concentrations in community B 

135 relative to community A can be explained by the absence of substantive PFAS sources between 

136 the two communities, dilution by tributaries, and the buffering effect of Jordan Lake, a large 

137 reservoir located between communities A and B. 

138 

PFBA 

PFDA 

• PFPeA 

•PFBS 

• PFHxA PFHpA PFOA PF:\!A 

139 

Community A 
n=l27 

Community 8 
n=73 
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n=34 
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• PFHxS 

200 

• PFOS • PFPrOPrA 

-!00 600 

Average concentra ti on in drin king wa ter source (ng!L) 

140 Figure 1. PFAS occurrence at drinking water intakes in the CFR watershed. Concentrations 

800 

141 represent averages of samples collected between }Lme and December 2013. Individual samples 

142 with concentrations< QLs were considered as 0 when calculating averages, and average 

143 concentrations < QLs were not plotted. 

144 
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145 In community C (downstream of a PFAS manufacturing site), legacy PFAS concentrations were 

146 low, and only mean (and median) concentrations of PFBA and PFPeA were >QLs. However, 

147 high concentrations of PFPrOPrA were detected (up to - 4500 ng/L). The average PFPrOPrA 

148 concentration (631 ng/L) was approximately eight times the average summed PFCA and PFSA 

149 concentrations (79 ng/L). Other PFECAs had not yet been identified at the time of analysis. 

150 Similar to communities A and B, the highest PFAS concentrations for community C were also 

151 observed at low flow (Figure 53 in SI). 

152 

153 PFAS fa te in conventional and advanced water treatment processes: To investigate whether 

154 PFASs can be removed from impacted source water, samples from DWTP C were collected at 

155 the intake and after each treatment step. Results in Figure 2 suggest conventional and advanced 

156 treatment processes (coagulation/flocculation/sedimentation, raw and settled water ozonation, 

157 BAC filtration, disinfection by medium pressure UV lamps and free chlorine) did not remove 

158 legacy PFASs, consistent with previous studies.21·25 The data further illustrate that no 

159 measurable PFECA removal occurred in this DWTP. Concentrations of some PFCAs, PFSAs, 

160 PFMOPrA, PFPrOPrA and PFMOAA may have incrt!ased after ozonation, possibly due to the 

161 oxidation of precursor compounds.24 Disinfection with medium pressure UV lamps and free 

162 chlorine (located the between BAC effluent and the finished water) may have decreased 

163 concentrations of PFMOAA, PFMOPrA, PFMOBA and PFPrOPrA, but only to a limited extent. 

164 Results in Figure 2 further illustrate that the PFAS signature of the August 2014 samples was 

165 similar to the mean PFAS signature observed during the 2013 sampling campaigns shown in 

166 Figure 1; i.e., PFPrOPrA concentrations (400-500 j.lg/L) greatly exceeded legacy PFAS 

167 concentrations. Moreover, three PFECAs (PFMOAA, PF02HxA and PF030A)11 had peak areas 

168 2-113 times greater than that of PFPrOPrA (Figure 2b). The existence of high levels of emerging 

169 PFASs suggests the necessity of incorporating them into routine monitoring. 

170 
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172 Figure 2. Fate of (a) legacy PFASs and PFPrOPrA and (b) PFECAs through a full-scale water 

173 treatment plant. Because authentic standards were not available for emergir1g PFECAs, 

174 chromatographic peak area counts are shown in panel b. PFPrOPrA data are shown in both 

175 panels and highlighted in dashed ovals fo r reference. Compounds with concentrations <QL 

176 were not plotted. 
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177 

178 PFAS adsorption by PAC: PAC can effectively remove long-chain PFCAs and PF5As, but its 

179 effectiveness decreases with decreasing PFA5 chain length.23-2U B It is unclear, however, how the 

180 presence of ether group(s) in PFECAs impacts adsorbability. After a contact time of 1 hour, a 

181 PAC dose of 100 mg!L achieved >80% removal of legacy PFCAs with carbon chain length ";!7. At 

182 a PAC dose of 60 mg/L, >80% removal was achieved for PFCAs with carbon chain length ";!8 

183 over the same time. At a PAC dose of 100 mg!L, removals were 95% for PF04DA and 54% for 

184 PF030A, but <40% for other PFECAs. Detailed removal percentage data as a function of PAC 

185 contact time are shown in Figure 55 in 51. PFMOAA could not be quantified by the analytical 

186 method used in this test; however, based on the observations that PFA5 adsorption decreases 

187 with decreasing carbon chain length and that PFECAs with one or two more carbon atoms than 

188 PFMOAA (i.e., PFMOPrA and PFMOBA) were poorly adsorbed by PAC (Figure 3), it is 

189 expected that PFMOAA adsorption is negligible at the tested conditions. 

190 To compare the affinity of different PFA5s for PAC, the PFA5 removal percentages in solution 

191 were plotted as a function of PFAS chain length (the sum of carbon (including branched), ether 

192 oxygen, and sulfur atoms) (Figure 3(b)). The adsorbability of both legacy and emerging PFA5s 

193 increased with increasing chain length. PF5As were more readily removed than PFCAs of 

194 matching chain length, which agrees with previous studies.2J. 24.28 PFECAs exhibited lower 

195 adsorbabilities than PFCAs of the same chain length (e.g. PFMOBA<PFHxA), suggesting that 

196 the replacement of a CF2 group with an ether oxygen atom decreases the affinity of PFA5s for 

197 PAC. However, the replacement of additional CF2 groups with ether groups resulted in small or 

198 negligible affinity changes among the studied PFECAs (e.g., PFMOBA-PF02HxA). 

199 Alternatively, if only the number of perfluorinated carbons were considered as a basis of 

200 comparing adsorbability, the interpretation would be different. In that case, with the same 

201 number of perfluorinated carbons, PFCAs have a higher affinity for PAC than mono-ether 

202 PFECAs (e.g., PFPeA>PFMOBA), but a lower affinity than multi-ether PFECAs (e.g., 

203 PFPeA<PF030A). 
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206 Figure 3. PFAS adsorption on PAC (a) a t ca rbon doses of 30, 60 and 100 mg!L and (b) as a 

207 function of PFAS chain length. PAC contact time in CFR water was 1 hour. Legacy PFASs were 

208 spiked at - 1000 ng!L and the emerging PF ASs were at ambient concentrations. Figures show 

209 average PFAS removal percentages, and error bars show one standard deviation of replicate 

210 experiments. 

211 

212 In either framework, it is clear that the presence of ether groups in PFECAs changes their 

213 propensity to leave the aqueous phase and ad sorb on PAC. It can thus be inferred that the 

214 incorporation of ether groups changes physiochemical properties, such as the octanol-water 
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215 partition coefficient and aqueous solubility of PFECAs relative to PFCAs. Consequently, it is 

216 reasonable to expect that fate and transport of PFECAs in natural and engineered systems will 

217 d iffer from that of legacy PFCAs. For example, whi le PFPrOPrA ("GenX") may be less 

218 bioaccumulative than PFOA, which it is replacing, the adsorption data here suggest PFPrOPrA 

219 is less hydrophobic than PFOA. Thus, when released to the environment, PFPrOPrA has a 

220 higher tendency to remain in the aqueous phase and is more difficult to remove from drinking 

221 water sources by adsorptive means. 

222 To the knowledge of the authors, this is the firs t paper reporting the behavior of recently 

223 identified PFECAs in water treatment processes. We further show that legacy PFASs continue to 

224 be a concern in the upper reaches of the CFR basin, and that PFECAs are an important class of 

225 fluorinated alternatives that dominated the PFAS signature downstream of a fluorochemical 

226 manufacturer. The relatively low concentrations of legacy PFASs in the finished drinking water 

227 of community Care consistent with data reported from this OWTP in the third unregulated 

228 contaminant monitoring rule (UCMR3) conducted by USEPAJ1• However, the detection of 

229 potentially high levels of PFECAs, and the difficulty to effectively remove not only legacy 

230 PFASs but also PFECAs with many water treatment processes, suggest the need for broader 

231 discharge control and contaminant monitoring. 
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Analytical standards: PFA5s studied in this research are listed in Table 51. For legacy PFA5s, 

native and isotopically labeled standards were purchased from Wellington Laboratories 

(Guelph, Ontario, Canada). Native PFPrOPrA was purchased from Thermo Fisher Scientific 

(Waltham, MA). No analytical standards were available fo r other PFECAs. 

PFAS quantification: PFA5 concentrations in samples from OWTPs and adsorption tests were 

determined by liquid chromatography tandem mass spectrometry (LC-MS/M5) using a large­

volume (0.9 mL) direct injection method. An Agilent 1100 Series LC pump and PE Sciex API 

3000 LC-MS/MS system equipped with a 4.6 mm x 50 mm HPLC column (Kinetex C18 S!Jm 

lOOA, Phenomenex Inc.) was used for PFA5 analysis. The eluent gradient is shown in Table S4 

in 51. All samples, calibration standards, and quality control samples were spiked with 

isotopically labeled internal standards, filte red through 0.45-!Jm glass microfiber syringe fi lters, 

and analyzed in duplicate. The MS transitions for PFAS analytes and internal standards are 

shown in Table 55 in 51. The quantitation limit (QL) was 25 ng!L for PF05 and 

perfluorodecanoic acid, and 10 ng!L for other legacy PFA5s and PFPrOPrA. For PFECAs 

without analytical standards, chromatographic peak areas are reported. 

PFAS concentrations along the treatment train of DWTP C were analyzed using a Waters 

Acquity ultra performance liquid chromatograph interfaced with a Waters Quattro Premier XE 

triple quadrupole mass spectrometer (Waters, Milford, MA, USA) after solid phase extraction. 

Method details are described elsewhere} The QL for all PFA5s with analytical standards was 

0.2 ng!L, and peak areas were recorded for PFECAs without standards. 



Table 51. Perfluoroalkyl substances (PFASs) detected in the Cape Fear River (CFR) wate rshed 

Perfluorocarboxylic acids (PFCAs) 
Perfluorobutanoic acid (PFBA) I 214.0 C4HF702 ~-22-4 3 

PerAuoropentanoic acid (PFPeA) ==:i_ 264.0 CsHF902 6-90-3 I 4 
Perfluorohexanoic acid (PFHxA) 314.1 GHF1t02 307-24-4 5 

-
Perfluoroheptanoic acid (PFHpA) 364.1 C1HFu02 375-85-9 6 -- -- -- -4 j - 335-67-"i-i-Perfluorooctanoic aci~ (PFOA) _ 1 414.1 CsHFts02 7 -- -- --- -
PerAuorononanoic acid (PFNA) ~ 464.1 C9HFti02 375-95-1 8 

- . 
Perfluorodecanoic acid (PFDA) __ 514.1 I CJOHFt90 2 335-76-2 1 9 

-
Perfluorosu lfonic acids (PFSAs) --

Perfluorobutane su lfonic acid (PFBS) 300.1 GHF950J 29420-49-3 4 I -- - -- -- , - - --
Perfluorohexane sulfonic acid (PFHxS) l 438.2 C6HF13S03 355-46-4 I 6 -- --
Perfluorooctane sulfonic acid (PFOS) 500.1 CsHF17S03 111873-33-7 8 

Perfluoroalkyl ether carboxylic acids with one ether group (mono-ether PFECAs) 
Perfluoro-2-methoxyacetic acid (PFMOAA) I 180.Df G HFsOJ J 674-13-5-- -2 

Perfluoro-3-methoxypropanoic acid (PFMOPrA) j 230.0 I "C:HFiOJ 1 
377-73-1 j_ 3 

Perfluoro-4-methoxybutanoic acid (PFMOBA) j 
Perfluoro-2-propoxypropanoic acid (PFPrOPrA) 

280.0 CsHF90 3 863090-89-5 4 

330.1 [ GHFttOJ 13252-13-6 5 

Perfluoroalkyl ether carboxylic acids with multiple ether group (multi-ether PFECAs) 
Perflu oro(3,5-d ioxahexaJ,~cid (PF02H xA) -----=r 2~r C4HF704 39492-8iJT - 3 -
Perfluoro(3,5,7-trioxaoctanoic) acid (PF030A) ! 312.0 - I CsHF90 s 39492-89-2 4 -- -- -- -- --

Perfl uoro(3,5,7,9-tetraoxadecanoic) acid (PF04DA)~ 378.1 ~ GHFn06 , 39492-90-5 _.__ 5 

4 
-
5 
-
6 

: -1 
190 1 

J -

f : -
-~-

4 
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7 
-· -

[_ 6 

1- ~ 
[" J

8
o -
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Table 52. Operational conditions of DWTP Con sampling day (August 18, 2014) 

Parameter Value 

Raw water ozone dose 3.1 mg.!!.. 

Raw water total organic carbon concentration 6.0 mg!L 

Aluminum sulfate coagulant dose 43 mg/L 

Coagulation pH 5.70 

Settled water ozone dose 1.3 mg/L 

Settled water total organic carbon concentration 1.90 mg/L 

Empty bed contact time in 
9.4 minutes for granular activated 

biological activated carbon filters 
carbon layer 

2.3 minutes for sand layer 

Medium pressure UV dose 25 mJ/cm2 

Free chlorine dose 1.26 mg/L as Ch 

Free chlorine contact time 17.2 hours 

Table 53. Water quality characteristics of surface water used in adsorption tests 

Table 54. LC gradient method for PF AS analysis 

Time (min) Mobile Phase A0 o (v/v) Mobile Phase B0 o Flow Rate (ml/min) 
I 

1---"-o~- 2_~_ r 2-s _ 
95 
95 -

5 0.9 
5 0.9 

5-10 

10-10.1 
r-- 10.1 -=1=4'---i---

95-10 
10 

10 - 95 

5 - 90 -
90 

90 - 5 

Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% methanol 

Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water 

0.9 
0.9 
0.9 



Table 55. MS transitions for PFAS Analysis 

Legacy PF ASs 

PFECAs 

C d 
MS/MS Internal ompoun .. 

Trans1hon standard 
PFBA 212.8 ---+ 168.8 13C4-PFBA 

PFPeA -- --
---- =t 262.9 ---+ 218.8_J_ 13C2- PFHx~ 

PFHxA 313.6 ---+ 268.8 13C2- PFHxA 

t 
-- --PFHpA 

PFOA 

I 362.9 ---+ 318.8 I 13C4- PFOA j 
..--------------+-~-41_3_.0_---+ 368.8 13C4- PFOA 

PFNA 
~ PFDA 

~3.0 ---+ 418.8 13C4- PFOA 

~13.1 ---+ 68.8 13C2-PFDA 

PFBS 299.1 ---+ 98.8 1802-PFHxS 

I PFHxS [399.1---+ 98.8--1802-PFHxS-

PFOS 498.9---+ 98.8 13C4-PFOS 

r 
PFMOAA ---.- N/A I 

-----
PFMOPrA 229.1 ---+ 184.9 N/A --
PFMOBA ~ PFPrOPrA 

279.0 ---+ 234.8 I N/A 

329.0 ---+ 284.7 13C2- PFHxA 

I 
f-

PF02HxA 

PF030A ---

245.1 __. 85.0 L 
311. __. 84.9 I 

PF04DA _l 377.1---+ 85.0 
I Perfluoro-n-[1,2,3,4-13C4]butanoic acid I 

217
_
0

---+ 172 I 
(13C4-PFBA) 

~fluoro-n-[1,2- 13C2]hexanoic acid I 
315

.1 ---+ 269 _8 
[ n-~--(L_1 .::.._3C2-PFHxA) _L_ ____, 

Perfluoro-n-[1,2,3,4-13C2]octanoic add 
417

_
0

---+ 
372

_
0 

N/A 

N/A -l 
N/A -j 

(13C4-PFOA) i Not applicable 
Perfluoro-n-(1,2-•JC2]decanoic acid 

515
_
1

---+ 
469

_
8 ___ _,_(_13C2-PFDA) -J-

[ Internal standards I 

Sodium perfluoro-1- I 403_1 ---+ 83 _8 1 
hexane[1S02]sulfonate (1802-PFHxS) _ 

Sodium perfluoro-1-[1,2,3,4-13C4]0ctane 1 
502

_
9 

__. 79_9 '------------~su:.....l~fo_n:..:.:.ate (13C4-PFOS) ~ 



Table 56. Maximum, minimum, mean and median concentrations (ng/L) of PFASs in CFR wa tershed surface water as drinking water 

sources.* 

PFBA 99 <10 26 33 38 <10 12 12 104 <10 12 22 

PFPeA 191 14 44 62 38 <10 19 19 116 <10 30 36 

PFHxA 318 <10 48 78 42 <10 <10 11 24 <10 <10 <10 

PFHpA 324 <10 39 67 85 <10 <JO 11 24 <10 <10 <10 

PFOA 137 <10 34 46 32 <10 <10 <10 17 <10 <10 <10 

PFNA 38 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 

PFDA 35 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 

PFBS 80 <10 <10 <10 11 <10 <10 <10 <10 <10 <10 <10 

PFHxS 193 <10 10 14 14 <10 <10 <10 14 <10 <10 <10 

PFOS 346 <25 29 44 43 <25 <25 <25 40 <25 <25 <25 

PFPrOPrA <10 <10 <10 <10 10 <10 <10 <10 4560 55 304 631 

PFOA+PFOS 447 0 64 90 59 0 0 9 55 <10 <10 <10 

I: PFASs** 1502 18 212 355 189 0 47 62 4696 55 345 710 

*Concentrations< quantification limits were considered as zero to calculate means and I: PFASs. 

**Other PFECAs were present in water samples from community C but could not be quantified and were therefore not included in I: 

PFASs 



Figure Sl. Molecular structures of PEFCAs in this study 
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Figure 52. Sampling sites in the Cape Fear River watershed, North Carolina 



1200 

Community A • • 1000 

I 
:::J 800 ~ J.. --0> 
c -c 
0 600 :;::; 
co .... -c 

I Q) 
400 (.) 

c 

I 0 

_ .!~!$ ... 
I () 

200 • 1 1- $ 0 • ~~ 

200r----------------------------------------------, 

150 

§ 100 
:;::; 

~ c 
~ 
c 
0 
() 50 

0 

Community B 

• 

• 

• 
• 

I 
• --
I 

• I 
• 



5000 
Community C • • 

4000 

:::? • ..._ • OJ 3000 c ..__.. 
c 
.Q 
-ro • L.. 2000 c 
a> 
u 
c 
0 
u 

1000 

0 ..... + ..... ..... ..... - - - ..... ....... ...... 

Figure 53. PFAS concentration distributions in the CFR watershed at three drinking water 

intakes. Concentrations< quantification limits were considered as zero. The upper and lower 

edges of a box represent the 75th and 25th percentile, respectively; the middle line represents the 

median; the upper and lower bars represent the 90th and 10th percentile, respectively; the dots 
represent outliners (>90th or <l 01h percentile). 
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Figure 55. PFAS adsorption on PAC at carbon does of (a, b) 30 mg/L, (c, d) 60 mg/L and (e, f) 100 

mg/L. Figures show average PFAS removal percen tages of d uplicate tests. 
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